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Abstract: A novel dual-polarization and dual-scan (DPDS) classification algorithm is developed for
clutter detection in weather radar observations. Two consecutive scans of dual-polarization radar
echoes are jointly processed to estimate auto- and cross-correlation functions. Discriminants are
then defined and estimated in order to separate clutter from weather based on their physical and
statistical properties. An optimal Bayesian classifier is used to make a decision on clutter presence
from the estimated discriminant functions. The DPDS algorithm is applied to the data collected with
the KOUN polarimetric radar and compared with the existing detection methods. It is shown that the
DPDS algorithm yields a higher probability of detection and lower false alarm rate in clutter detection.

Keywords: dual-polarization and dual-scan (DPDS); weather radar; polarimetry; Bayesian
classifications; clutter detection

1. Introduction

Ground clutter in weather radar observations causes degradation of data quality and can lead
to misinterpretation of radar echoes. It is important to detect clutter and to mitigate clutter effects to
obtain accurate weather measurements. Ground objects such as buildings, power line poles, and trees
can cause severe clutter to be mixed with weather echoes when the radar beam points at low elevation
angles. Since these objects are mostly stationary, a band-stop filter can be applied to remove clutter
contaminations [1,2]. Although this traditional filtering is frequently used to remove clutter from
weather signals, the power components of weather signals may fall into the stop band, causing the filter
to also suppress its power components and bias the moment estimates, especially for narrow-band
zero-velocity weather signals [3–5]. Although the Gaussian Model Adaptive Processing (GMAP)
algorithm [3] is capable of recovering the weather power spectrum, it is time-consuming to apply
GMAP at every gate. Thus, to avoid biases from the filtering and to be efficient, the ground clutter
locations should first be accurately identified, before applying the filtering, to obtain high-quality
weather data.

There are a number of clutter detection methods that have been developed and used in weather
radar community. Historically, the clutter map method was used for clutter detection, in which radar
measurements are made in clear-air conditions. It was also used for clutter-contaminated areas [6].
However, a clutter map can change depending on weather conditions, e.g., abnormal propagations.
Therefore, this method is not always reliable.

The clutter mitigation decision (CMD) algorithm was introduced in [7–9], which utilizes
differences in signal coherence and spatial texture between ground clutter and weather for clutter
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detection. The CMD algorithm is widely known in the weather radar community and combines clutter
phase alignment (CPA), texture of reflectivity (TDBZ), and spatial variability of reflectivity field as
three discriminant functions for clutter detection. However, the CMD is based on single polarization
radar data, and we will show that the probability of detection for CMD is not acceptable, in comparison
to other proposed algorithms. The Spectrum Clutter Identification (SCI) algorithm was developed
in [2,5,10,11]. It was based on single polarization signal and combined four discriminants for clutter
detection. Considering that radar signals from ground clutter have a much longer correlation time
than that from weather, a scan-to-scan (dual scan: DS) method was proposed in [12], and shown to
be effective in clutter detection. Dual-scan data are available for most operational radars such as the
weather surveillance radars (WSR-88D) at low elevation angles.

Furthermore, the WSR-88D radar network has been updated with dual-polarization capability [5].
Dual-polarization (DP) data provide rich information for clutter detection. In [5,13], a simple Bayesian
approach that utilizes dual-polarization data was developed to separate clutter from weather signals.
Discriminant functions of cross correlation coefficients between dual-polarization signals, power
ratio (PR), and differential reflectivity (ZDR) are defined and combined for clutter detection with
improved results.

In this paper, we combine dual-polarization and dual-scan (DPDS) methods to further improve
detection accuracy. Since more information is used, the DPDS method provides a higher probability of
detection and lower false alarm rate.

This paper is organized as follows: In Section 2, three discriminants derived from DPDS
measurements are introduced. In Section 3, the implementation procedure of the DPDS algorithm is
discussed. In Section 4, the performance of the DPDS algorithm is evaluated using controlled data
collected by KOUN polarimetric radar. Practical results demonstrate that DPDS algorithm improves
the detection performance significantly. Conclusions are drawn in Section 5.

2. Discriminant Functions

The Bayesian classifier is used to combine DPDS information for clutter detection, which includes
estimation and aggregation of discriminants for decision making. In this section, three discriminant
functions for clutter detection are defined and estimated based on the DPDS data. The DPDS
discriminant functions are the differential reflectivity (ZDR), the cross-correlation coefficient between
two scans (ρ12), and the copolar cross-correlation coefficient between dual-polarization (H and
V-polarization) (ρhv) signals.

Our training data were collected by the national KOUN (WSR-88D) radar on two different
days—this data were used to find the probability density functions (PDFs) for the discriminant
functions. The training weather data were collected at 13:08 UTC on 9 February 2011. The weather
was mostly cloudy without any precipitation. The training clutter data were collected in clear weather
conditions, at 00:46 UTC on 4 February 2011. It should be noted that we created a controlled training
data set by matching and combining the almost pure clutter data at 00:46 UTC on 4 February 2011,
and pure weather data at 13:08 UTC on 9 February 2011.

Two sequential azimuthal scans with different pulse repetition times (PRTs) are used in the
volume coverage patterns (VCPs) of the WSR-88D to mitigate range–velocity ambiguities [14]. The first
azimuthal scan collects voltage samples data using long PRT (Ts1 = 3.10 ms); and the second scan
at the same elevation angles uses a short PRT (Ts2 = 0.973 ms), as shown in Figure 1. To implement
the scan-to-scan method, the short PRT data are down-sampled in order to be matched with its
corresponding long PRT data. Because the WSR-88D records the azimuth of each voltage sample,
we were able to select those short PRT samples that are nearest in azimuth to the corresponding,
long PRT samples.
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Figure 1. Dual-polarization and dual-scan (DPDS) weather radar.

Weather I/Q data were edited by excluding the resolution volumes showing SNR < 20 dB.
The 20 dB SNR threshold is applied to produce data to mitigate/avoid noise effects. The weather
data consist of two scans at the same elevation angle (i.e., 1.49˝) separated by about 36 s. The clutter
data were collected at 00:46 UTC on 4 February 2011 with two scans at the same elevation angle (0.5˝)
separated by about 76 s under clear air conditions. Ground clutter I/Q data were edited by deleting
the resolution volumes showing mean Doppler velocities |vr| ě 1 m¨ s´1 and CNR (Clutter to Noise
Ratio) < 3 dB. This deletion provided a clutter field not contaminated from moving objects on the
ground or airborne (e.g., birds and aircraft).

The three discriminant functions for DPDS clutter detection are defined as:

A. Co-Polar Cross-Correlation Coefficient (ρhv)

Co-polar correlation coefficient between H and V, commonly known as dual-polarization
correlation coefficient for H and V co-polar echoes, is a polarimetric parameter frequently used
in the weather radar community, and it is defined as [5,13]:

ρhv1 “

ˇ

ˇ

ˇ

ˇ

1
M

M
ř

m“1
Vh1pmqV

˚
v1pmq

ˇ

ˇ

ˇ

ˇ

d

ˇ

ˇ

ˇ

ˇ

1
M

M
ř

m“1
Vh1pmqV

˚
h1pmq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
M

M
ř

m“1
Vv1pmqV

˚
v1pmq

ˇ

ˇ

ˇ

ˇ

0 ď m ď M´ 1

ρhv2 “

ˇ

ˇ

ˇ

ˇ

1
M

M
ř

m“1
Vh2pmqV

˚
v2pmq

ˇ

ˇ

ˇ

ˇ

d

ˇ

ˇ

ˇ

ˇ

1
M

M
ř

m“1
Vh2pmqV

˚
h2pmq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1
M

M
ř

m“1
Vv2pmqV˚

v2pmq
ˇ

ˇ

ˇ

ˇ

(1)

where V represents the complex echo signal sample received from h (v) as the horizontally (vertically)
polarized echo samples from the first or second scan; subscript m signifies the echo sample number;
and M is the number of samples in a dwell time (i.e., the time used to make estimates of polarimetric
variables and spectral moments).
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Reliable ground truth is an important issue to evaluate the performance of clutter detectors [7,8].
To obtain the class label of each resolution volume for obtaining the training data and discriminant
PDFs, CMD has been used as suggested by [9]. Although the performance of the CMD algorithm is
entirely acceptable for our controlled training data, all PDFs were double-checked and modified by
our DPDS algorithm.

The following are the three classes of echoes being considered:

1. Clutter (“C”) (narrow band zero Doppler velocity)
2. Narrow-Band Zero Velocity Weather (“W0”) (i.e., |vr| ď 2 m¨ s´1 and σv ď 2 m¨ s´1

3. Non-Zero Velocity Weather (“W”) (i.e., |vr| > 2 m¨ s´1 and σv > 2 m¨ s´1)

where |vr| and σv are the mean Doppler velocity and the spectrum width of weather, respectively [4,5,8].
We considered W0 as a separate weather class because their properties are mostly similar to clutter
signals, and thus are the most challenging to distinguish. Weather signals W0 are echoes from resolution
volumes where the turbulence and the mean wind radial shear are weak, with a mean radial velocity
close to zero; thus, these weather signals commonly have a longer correlation time τc compared with
the other weather signals (i.e., W).

There are two correlation coefficient between H and V polarization, based on the two scans, i.e.,
ρhv1 and ρhv2. We used ρhv as the average of ρhv1 and ρhv2, because the PDFs are almost the same.

The pdf of ρhv is shown in Figure 2. It can be seen from this figure that ρhv values for both clutter
and weather signals are mostly close to one. However, the ρhv for ground clutter has much larger
spread values compared with weather signals. It should be noted that the clutter pdf of ρhv depends on
the characteristics of scatterers and antenna rotation, and can be easily updated, based on the weather
condition, radar and antenna rotation.
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B. Dual-Scan Cross-Correlation Coefficient

Dual-scan cross-correlation coefficient between two-time series from the same location but from
consecutive scans is defined as [5,15,16]:

ρ12h “
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This cross-correlation can be calculated for both h and v polarizations. Thus, there are two
discriminants, ρ12h and ρ12v, and we used ρ12 as the average of ρ12h and ρ12v, due to their having
mostly the same PDFs.

It is expected that ρ12 should be larger for ground clutter than weather signals [4,5,12], because
ground clutter has a longer correlation time than weather signals, as shown in Figure 3.
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Figure 3. Dual-scan cross-correlation coefficient (ρ12v).

Figure 4 illustrates the joint pdf between dual-scan cross-correlation and dual-polarization
cross-co-polar correlation, for two different SNR threshold values. As expected, the weather signals
have larger ρhv with smaller ρ12. Additionally, the clutter has larger ρ12 values with a wide range of
ρhv. Thus, it can be clearly concluded that the joint pdf of clutter and weather signals are thoroughly
separated in terms of this discriminant function. Therefore, this discriminant function can undoubtedly
reduce the error detection and improve the probability of detection compared to previous common
algorithms. As can be seen from this figure, the SNR threshold value may change the joint PDFs,
but the performance of the DPDS algorithm is not sensitive to SNR, because the overlapped areas
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between clutter and weather do not change with SNR. Other discriminants can be considered for future
works by using cross-correlation between multiple antennas and exploiting spatial diversity [17–19].
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C. Differential Reflectivity (ZDR)

Differential reflectivity is the power ratio of horizontal and vertical polarization signals [20], and is
defined as:
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The PDFs of differential reflectivity based on the training data are shown in Figure 5. As is normally
expected, the ZDR values for clutters have a wider range in comparison to weather signals [4,5]. Because we
conducted two consecutive scans, there are two differential reflectivities (i.e., ZDR1 and ZDR2); and both
of them most likely have the same PDFs; thus, we used the averaged value for ZDR. It can be seen
from Figure 5 that both PDFs center near zero, but that clutter has a wide distribution, whereas the
PDF for weather signals is narrow. Because the PDF of ZDR for weather is much larger than that of
the clutter in the region near zero, it is clear that clutter with the near-zero ZDR values would most
likely be detected as weather instead of clutter. Therefore, in order to decrease the detection error rate,
ZDR in the interval within the pair of vertical lines is not considered for clutter detection. ZDR does
not contribute as much as the other discriminants. However, from our experience, there is around a
3%–5% performance improvement for PD when we use ZDR as a discriminant.
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3. Bayes Optimal Decision

After the PDFs are obtained from training data, they will be used as a reference for the optimal
Bayesian classifier to make decisions on testing data. The PDFs and three types of radar echoes are
shown in Figures 4 and 5. The three discriminants of testing data are calculated from Equations (1)–(3)
for each gate, to form the observational discriminant vector X˝ = (ZDR, ρhv, ρ12).

Given an observation of the discriminants (X˝), the classifier will identify that X = X˝ belongs to
the classωi, if and only if p(ωi|X˝) > p (ωj|X˝) for i, j P [C, W0, W], j ‰ i. According to the Bayes rule,
the probability of ith class given the observed X˝, can be calculated as [21]:

ppωi|X “ XOq “
ppX “ XOˇ

ˇωiqppωiq

ppX “ XOq
(4)

A priori probabilities are assumed to be equal for all classes, i.e., p pCq “ p pW0q “ p pWq “ 1
3 .

Furthermore, as p(X = X˝) is the same for all classes, Equation (4) can be rewritten as:

ppωi

ˇ

ˇ

ˇ
X “ XOq “ K ppX “ XO

ˇ

ˇ

ˇ
ωiq (5)

where K is constant for all classes.
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ˇX “ XOq is proportional to the likelihood function of classes with respect to
X = X˝, i.e., ppX “ XOˇ
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by using the PDFs that are shown in Figures 4 and 5. Thus we have:
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Therefore, ppX “ XOˇ
ˇωiq is calculated for all classes, and the class corresponding to the maximum

probability value will be selected as the classification decision. Thus, we can infer that Bayesian
classifier assigns X = X˝ to “C” only if

ppX “ X˝|Cq ą ppX “ X˝|W0q and ppX “ X˝|Cq ą ppX “ X˝|Wq
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The DPDS algorithm is summarized in the following steps:

1. Calculate SNR for current gate. If SNR < 20 dB, the current gate is considered not to have a
significant weather signal and we compute SNR for the next range gate. Otherwise, go to step 2.

2. Compute the three observed discriminant functions for the current gate, and calculate
ppX “ XO

ˇ

ˇC q , ppX “ XO
ˇ

ˇW0q , and ppX “ XO
ˇ

ˇWq using Equation (6).
3. If ppX “ XO

ˇ

ˇCq ą ppX “ XO
ˇ

ˇW0q and ppX “ XO
ˇ

ˇCq ą ppX “ XO
ˇ

ˇWq for the current gate,
the data is clutter-contaminated. Otherwise, the data is not contaminated and we return to
step 1) for the next gate.

4. Performance Evaluations of DPDS

In this section, the performance of the DPDS algorithm is evaluated using the testing control
data sets collected by the KOUN (WSR-88D) radar at 13:07, 13:08 and 14:02 UTC on 9 February 2011,
and 00:46 UTC on 4 February 2011 with two scans at the same elevation angle. The same procedure
has been used to obtain the ground truth, from the combination of pure clutter and pure weather data
for the controlled testing data sets. Therefore, the ground truth will be used as a reference for the
clutter detection algorithms. The ground truth can also be used to find the clutter to noise ratio (CSR).
By changing the CSR, we can compare the performances of detection algorithms.

We will compare the DPDS algorithm to previous clutter detection algorithms, such as DP, DS,
CMD, presented in [8,12,13]. Figure 6 shows the statistical characteristics of our testing data for DPDS.

Figure 6. Pure weather signals (13:08 UTC on 9 February 2011) mixed with pure ground clutter
(00:46 UTC on 4 February 2011). (a) Dual-scan cross-correlation coefficient; (b) dual-polarization
co-polar cross-correlation coefficient; (c) differential reflectivity; (d) ground truth clutter map.

To evaluate the performance of DPDS, the numbers of true positives (TP), false negatives (FN),
false positives (FP), and true negatives (TN), as well as probability of detection PD, and probability of
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false alarm PFA are calculated. “True” or “False” stand for truly or falsely detected by the algorithm,
and “Positive” or “Negative” stand for the clutter decision made by the algorithm. The probability of
detection and false alarm (i.e., PD and PFA) are generally calculated as:

PD “
TP

TP` FN
, PFA “

FP
FP` TN

Figure 7 illustrates the probability of detection (PD) versus clutter to signal ratio for DPDS,
DP, DS, and CMD algorithms. It is clear PD rate should increase with increasing clutter power or
CSR. All radars do not have ability to collect dual scan data. However, the same procedure can be
implemented to detect clutter using other discriminants such as power ratio (PR—defined as the ratio
between coherent and incoherent power). As shown in Figure 7, there is still significant improvement
in PD using the proposed clutter detection procedure over that of CMD. Figure 8, illustrates the clutter
map of the ground truth along with CSR, and clutter maps of DPDS, DP, DS, and CMD algorithms.
As can be seen from this figure, the DPDS is most similar to ground truth in comparison to other
algorithms. Additionally, it was shown in Figure 7 that the difference between PD of DPDS and other
detection algorithms increased with decreasing CSR. Therefore, the DPDS improvement gain is clearly
observable in the resolution of the clutter map, in Figure 8, especially for the low values of CSR.
It also can be seen from Figure 8 that for high CSR values, DPDS algorithm has better performance in
comparison to DP, DS, and CMD algorithms, respectively.

In Table 1, we list the probability of false alarm (PFA) for the three controlled testing data sets,
collected by KOUN at 13:07, 13:08 and 14:02 UTC on 9 February 2011.

From Table 1, we can see that all four algorithms produce low PFA, the reason is that there are too
many weather signal pixels. This table shows that DPDS algorithm produces the lowest PFA with the
highest PD.

Table 1. PFA for three testing data by using the DPDS, DP, DS, and CMD algorithms.

Data-Time, UTC CMD DS DP DPDS

13:08 0.7770% 0.3387% 0.4782% 0.00%
13:07 0.5525% 0.2130% 0.3195% 0.00%
14:02 0.6346% 0.2363% 0.3443% 0.00%
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5. Conclusions

In the proposed DPDS clutter detection algorithm, a dual-polarization and dual-scan (DPDS)
weather radar improves detection of clutter from weather signals with minimum error rates.
Cross-correlation and auto-correlation between two scans of dual-polarization radar signs have been
jointly combined to form exceptional discriminant functions. The PDFs of discriminants may change
and may need to be updated based on the weather, clutter, and antenna rotation, but the procedure of
detecting clutter is the same. Proposing a thorough clutter detection method for various conditions
and precipitations will still serve as a motivator for future works. A well-known Bayesian classifier
has been defined to make an optimal decision for clutter detection, based on discriminant functions.
Practical control data sets have verified the performance improvement of our proposed DPDS algorithm
compared with DP, DS, and CMD algorithms. The statistical and physical characteristics obtained
from dual-polarization weather radars can be generalized to detect other objects instead of just clutter.
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